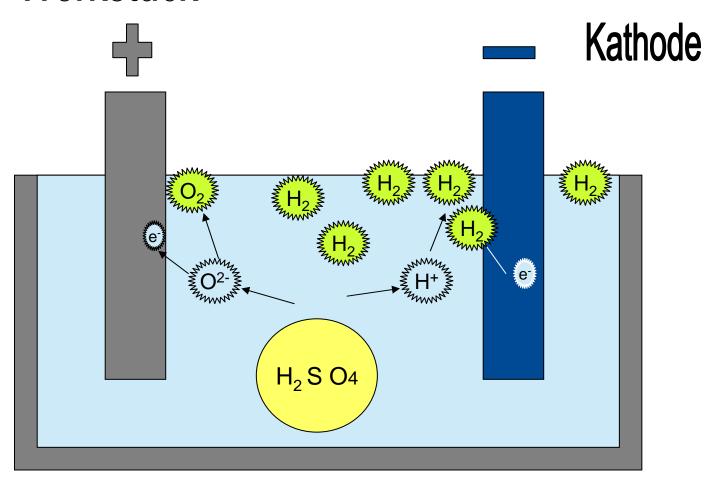


Sankt Augustiner Expertentreff "Gefahrstoffe"

Emissionsmindernde Maßnahmen beim Eloxieren mit Schwefelsäure Dipl.-Ing. P. Michels (TAB, BG ETEM)

Was ist Eloxieren?

Eloxieren in der Oberflächenbehandlung von Aluminium


Elektrolytische (anodische) Oxidation von Aluminium

Gezielte technische Oxidation der Aluminiumoberfläche Nicht zu verwechseln mit dem Galvanisieren, bei dem eine Beschichtung durch elektrolytische Abscheidung an der Kathode erfolgt!

Eloxieren - Schwefelsäureverfahren


Anode - Werkstück

Eloxieren - Verfahren

Eloxalbehälter in einer Handanlage Aluminiumwerkstücke an der Anodenschiene

Gefährdungsbeurteilung

Bewertung der inhalativen Gefährdung durch Schwefelsäureaerosole

nach

§ 7 Gefahrstoffverordnung mit TRGS 400 und TRGS 402

Gefahrstoff "Schwefelsäure "

Gefahrstoff	Einstufung/ gefährliche Eigenschaften nach GefStoffV	Kennzeichnung nach GHS	Sonstige Einstufungen
Schwefelsäure im Elektrolyten 180 bis 200 g/l	Ätzend, R 35, S 26-30-45	Ätzend, Kategorie 1 H 314, P Gefahr	TRGS 905 (KMR- Liste): kein Eintrag DFG-Liste: Krebserzeugend Kategorie 4 Schwangerschaft Gruppe C

Schwefelsäureaerosole: Bewertung

Regelwerke	Luftgrenzwert für Schwefelsäureaerosole	Bemerkungen
TRGS 900 AGW	kein AGW gelistet, ehemaliger MAK-Wert: 0,1 mg/m³	Bewertung der inhalativen Exposition entsprechend Abschnitt 5.3 der TRGS 402
DFG- Senatskommission MAK- und BAT-Werte- Liste	MAK: 0,1 mg/m³ für die einatembare Fraktion	nicht verbindlicher Grenzwertvorschlag
Richtlinie 2009/161/ EU der Kommission	EU-Arbeitsplatz-Richtwert: 0,05 mg/m³ für die toraxgängige Fraktion von Schwefelsäurenebel	nicht verbindlicher Richtwert

Problem

Die notwendige Beurteilung der inhalativen Exposition im Rahmen der Gefährdungsbeurteilung nach § 7 GefStoffV bereitet in der Praxis Probleme.

Für Schwefelsäureaerosole ist kein Arbeitsplatzgrenzwert (AGW) in der TRGS 900 gelistet. Dadurch fehlt eine wichtige Bewertungsgrundlage für die inhalative Gefährdung von Mitarbeitern in solchen Betrieben.

Eloxieren - Verfahrensschritte

Prozess: Eloxieren -1

Prozess	Einsatzstoffe/ Parameter	
Vorbehandlung Reinigen, Entfetten	Tenside, schwach alkalisch	
Beizen (hier entsteht die Optik der Oberfläche), ggf. Glänzen	Natronlauge (50 – 60 g/l) bei 60 °C Bei Reflektoren erfolgt an dieser Stelle das Glänzen i.d.R. mit Flusssäure/Salpetersäure	
Spülen	Wasser	
Dekapieren	Verdünnte Schwefelsäure oder Salpetersäure	
Spülen	Wasser	
••••		

Prozess: Eloxieren -2

Prozess	Einsatzstoffe/Parameter
Eloxieren: Gleichstrom- Schwefelsäure- Verfahren	Schwefelsäurekonzentration: 180 bis 200 g/l Stromdichte: 1,5 A/dm²; Stromstärken: 1000 A – 20 000 A Spannung: 18 bis 20 Volt Temperatur: 18 °C bis 22°C (Kühlung erforderlich)
Färben	ohne Strom; Einlagern von Farbpigmenten in die Poren der Oberfläche
Verdichten	Beim Verdichten mit heißem Wasser (96 °C) werden die Poren der Aluminiumoxidschicht geschlossen, ggf. wird vorher Kalt, d.h. chemisch verdichtet.

Eloxieren – Anlagentechniken

Handanlage

Krananlage

Automatische Gestellanlage

IFA-Expositionsdatenbank (MEGA)

Datenbestand der BGETEM: Schwefelsäureaerosole in Eloxalbetrieben im Zeitraum 2004 – 2009

Kollektive	Anzahl der Messdaten	Anzahl der Betriebe	≥ GW in %	50% -Wert mg/m ³	95% -Wert mg/m ³
Komplett	89	28	42	0,037	0,862
Stationär	49	24	39	0,025	1,952
Person	40	20	45	0,065	0,280

Die Tabelle enthält Messdaten mit und ohne lufttechnische Maßnahmen, jedoch ohne Kathodenumhüllung

Schutzmaßnahmen - Eloxieren

Substitution

- Ersatzstoff
- Emissionsmindernde Verfahren: Kathodenumhüllung

Absaugung am Elektrolyten

- Einhausung (geschlossene Erfassung)
- Randabsaugung (offene Erfassung)

Raumlufttechnische Maßnahme

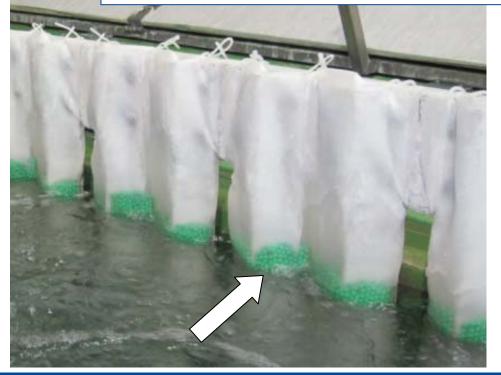
Netzmittel auf dem Elektrolyten

Vorliegende Vergleichsmessungen zeigen eine geringe Emissionsmindernde Wirksamkeit

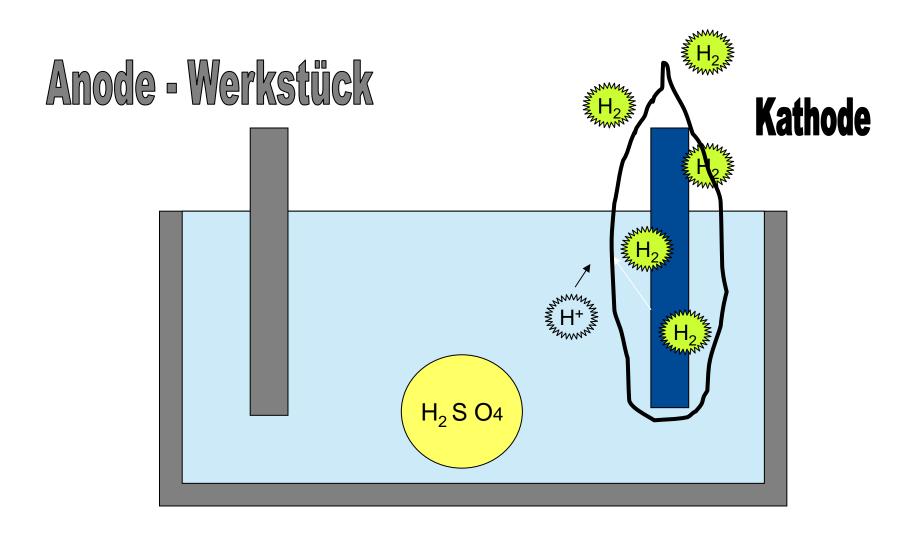
Problem: Erhaltung der vollständigen Abdeckung

Einhausung mit Absaugung

Randabsaugung (beidseitig)



Kathodenumhüllung



Im Inneren der Umhüllungen wurden Kügelchen zur Verbesserung der Trennung von Gas und Flüssigkeit eingebracht

Kathodenumhüllung - Prinzip

Kathodenumhüllung

Erste Vergleichsmessungen nach Schwefelsäureaerosolen in der Luft am Arbeitsplatz, vor und nach Einführung der Kathodenumhüllung, in drei Eloxalbetrieben (A, B, C)

Messungen erfolgten stationär am Eloxalelektrolyten und parallel dazu an der Bedienperson

In allen Betrieben waren keine zusätzlichen Emissionsmindernden Maßnahmen wirksam

Vergleichsmessungen – Kathodenumhüllung

Betrieb A

Schwefelsäureaerosol-Konzentrationen in mg/m ³			
Stationär			
ohne Kathodenumhüllung	mit Kathodenumhüllung	ohne Kathodenumhüllung	mit Kathodenumhüllung
0,12/ 0,44		1,24/ 0,31	0,021/ 0,030

Anm.: Probenahmen jeweils an einer Messstelle (stat./pers.) an unterschiedlichen Tagen .../.../

Vergleichsmessungen – Kathodenumhüllung

Betrieb B

S	Schwefelsäureaerosol-k	Conzentrationen in m	ng/m ³
Stationär		Person	
ohne Kathodenumhüllung	mit Kathodenumhüllung	ohne Kathodenumhüllung	mit Kathodenumhüllung
1,5/ 0,34	0,058/ 0,12/ 0,054	0,093	0,031/ 0,032/ 0,040
0,44/ 0,32	0,027/ 0,023/ 0,048	0,19	0,031/ 0,025/ 0,059
* Defekte an der K	athodenumhüllung; *	* ca. 15% defekt; **	** ca. 80% defekt
	*0,320		*0,093
	*0,340		*0,190
	**0,118		**0,096
	**0,119		**0,049
	***0,370		***0,160
	***0,420		***0,130

Anm.: Probenahmen jeweils an einer Messstelle (stat./pers.) an unterschiedlichen Tagen .../.../...

Vergleichsmessungen – Kathodenumhüllung

Betrieb C

1,481

0,374

0,097

Schwefelsäureaerosol-Konzentrationen in mg/m ³				
(Probenahmen zwischen Eloxalbädern in 2h-Schritten; 08:00 – 16:00)				
Stationär		Person		
ohne Kathodenumhüllung	mit Kathodenumhüllung	ohne Kathodenumhüllung	mit Kathodenumhüllung	
1,314	0,14	0,525	0,17	

1,00 (8h)	0,25 (8h)
-----------	-----------

Die Probenahmen erfolgten in 2h-Schritten, da die Stromstärken je nach Werkstückoberflächen stark variieren (1,1 bis 6,2 kA)!

0,45

0,11

0,17

Fazit:

Die Kathodenumhüllung kann gerade mit Blick auf den neuen EU- Arbeitsplatz-Richtwert von 0,05 mg/m³ eine gute Ergänzung der Schutzmaßnahmen zur Emissionsminderung von Schwefelsäureaerosolen sein.

Vergleichsmessungen erbrachten Emissionsminderungen bis um den Faktor 10. Defekte an der Kathodenumhüllung können die Wirksamkeit allerdings erheblich beeinträchtigen. Das Verfahren muss weiter untersucht werden.

Verwertung der Erkenntnisse:

Einbringen der Informationen in die BGI 790-016 "BG/BGIA-Empfehlungen für die Gefährdungsbeurteilung nach der Gefahrstoffverordnung, Galvanotechnik und Eloxieren"

.....als mögliches Emissionsminderndes Verfahren